Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,4-Bis(4-pyridylsulfanylmethyl)benzene

Suk-Hee Moon^a and Ki-Min Park^{b*}

^aSubdivision of Food Science, Kyungnam College of Information and Technology, Busan 616-701, Republic of Korea, and ^bResearch Institute of Natural Science, Gyeongsang National University, Jinju 660-701, Republic of Korea Correspondence e-mail: kmpark@gnu.ac.kr

Received 1 June 2008; accepted 11 June 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.053; wR factor = 0.122; data-to-parameter ratio = 17.2.

In the title compound, $C_{18}H_{16}N_2S_2$, a crystallographic inversion centre lies at the centre of the benzene ring, and the two terminal 4-mercaptopyridyl groups adopt an *anti* geometry. Each benzene ring makes a dihedral angle of 55.4 (1)° with the plane of the benzene fragment. The crystal structure is stabilized by $C-H\cdots\pi$ interactions between a benzene H atom and a pyridyl ring of a neighbouring molecule. In addition, the crystal structure exhibits intermolecular $C-H\cdots N$ interactions.

Related literature

For details of the preparation and related structures of 1,4bis(2-pyridyl-sulfanylmethyl)benezene derivatives, see: Atherton *et al.* (1999); McMorran & Steel (2003); For the structures of Co(II) and Ag (I) complexes of 1,4-bis(2pyridylsulfanylmethyl)benezene, see: Hartshorn & Steel (1998). For bond-length data, see: Allen *et al.* (1987).

Experimental

Crystal data C₁₈H₁₆N₂S₂

 $M_r = 324.45$

Monoclinic, $P2_1/c$	Z = 2
a = 7.145 (1) Å	Mo $K\alpha$ radiation
p = 6.1667 (8) Å	$\mu = 0.33 \text{ mm}^{-1}$
c = 17.954 (2) Å	T = 298 (2) K
$\beta = 90.391 \ (3)^{\circ}$	$0.35 \times 0.20 \times 0.15 \text{ mm}$
$V = 791.03 (18) \text{ Å}^3$	

Data collection

Bruker SMART CCD area-detector	1717 independent reflections
diffractometer	893 reflections with $I > 2\sigma(I)$
Absorption correction: none	$R_{\rm int} = 0.074$
4706 measured reflections	

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.052 & 100 \text{ parameters} \\ wR(F^2) = 0.121 & H\text{-atom parameters constrained} \\ S = 0.96 & \Delta\rho_{\max} = 0.32 \text{ e } \text{\AA}^{-3} \\ 1717 \text{ reflections} & \Delta\rho_{\min} = -0.17 \text{ e } \text{\AA}^{-3} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of N1/C1/C2/C3/C5 pyridyl ring.

$D-H\cdots A$ $D-H$ $H\cdots A$ $D\cdots A$ $D-H\cdots A$								
$C1 - H1 \cdots N1^{i}$ $C8 - H8 \cdots Cg^{ii}$	0.93 0.93	2.61 2.77	3.484 (4) 3.560 (4)	158 143				
Symmetry codes: (i) $-x - 1$, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) $-x$, $-y$, $-z + 1$.								

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT-Plus* (Bruker, 2000); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL* and *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *SHELXTL*.

This work was supported by a Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2007–359-C00019).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2058).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Atherton, Z., Goodgame, D. M. L., Menzer, S. & Williams, D. J. (1999). Polyhedron, 18, 273–279.
- Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hartshorn, C. M. & Steel, P. J. (1998). J. Chem. Soc. Dalton Trans. pp. 3935-3940.
- McMorran, D. A. & Steel, P. J. (2003). Tetrahedron, 59, 3701-3707.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2008). E64, o1285 [doi:10.1107/81600536808017571]

1,4-Bis(4-pyridylsulfanylmethyl)benzene

S.-H. Moon and K.-M. Park

Comment

The reaction of α, α' -dibromo-*p*-xylene with 4-mercaptopyridine afforded the title compound, in which the crystallographic inversion centre lies on the centre of the benzene ring. Therefore, the asymmetric unit consists of a half of molecule and the two 4-mercaptopyridyl groups adopt an anti-geometry (Fig. 1). All bond lengths and angles show normal value (Allen *et al.*, 1987). The dihedral angle between the plane of benzene and the terminal pyridyl ring is 55.4 (1)°, which is smaller than those of related structures (Atherton *et al.*, 1999; Hartshorn & Steel, 1998).

The crystal packing (Fig. 2) is stabilized by C—H··· π interactions between a benzene H atom and the pyridyl ring of neighbouring molecule, with a C8—H8···*Cg* separation of 2.77 Å (Fig. 2 and Table 1; *Cg* is the centroid of N1/C1/C2/C3/C5 pyridyl ring, symmetry code as in Fig. 2). The molecular packing (Fig. 2) is further stabilized by intermolecular C—H···N hydrogen bonds between a pyridyl H atom and the pyridine N atom of neighbouring molecule, with a C1—H1···N1ⁱ separation of 2.61 Å (Fig. 2 and Table 1; symmetry code as in Fig. 2).

Experimental

The title compound was prepared by the reaction of α, α' -dibromo-*p*-xylene with 4-mercaptopyridine in acetonitrile according to reported methods (Atherton *et al.*, 1999; McMorran & Steel, 2003). Single crystal suitable for X-ray analysis were obtained by evaporation of a solution of the title compound in acetonitrile.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.93 Å, $U_{iso} = 1.2U_{eq}(C)$ for aromatic and 0.97 Å, $U_{iso} = 1.2U_{eq}(C)$ for CH₂ atoms.

Figures

Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms. [Symmetry code: (i) -x + 1, -y + 1, -z + 1]

Fig. 2. C—H… π and C—H…N interactions (dotted lines) in the title compound. *Cg* denotes the ring centroid. [Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x-1, y+1/2, -z+3/2; (iii) -x-1, y-1/2, -z+3/2; (iv) x+2, -y+1/2, z-1/2; (v) x+2, -y+3/2, z-1/2; (vi) -x, -y, -z+1; (vii) x+1, y+1, z.]

1,4-Bis(4-pyridylsulfanylmethyl)benzene

Crystal	data
---------	------

C₁₈H₁₆N₂S₂ $M_r = 324.45$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 7.145 (1) Å b = 6.1667 (8) Å c = 17.954 (2) Å $\beta = 90.391$ (3)° V = 791.03 (18) Å³ Z = 2 $F_{000} = 340$ $D_x = 1.362 \text{ Mg m}^{-3}$ Mo K\alpha radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4706 reflections $\theta = 2.3-27.0^{\circ}$ $\mu = 0.33 \text{ mm}^{-1}$ T = 298 (2) KPlate, colourless $0.35 \times 0.20 \times 0.15 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer	893 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.074$
Monochromator: graphite	$\theta_{\text{max}} = 27.0^{\circ}$
T = 298(2) K	$\theta_{\min} = 2.3^{\circ}$
φ and ω scans	$h = -9 \rightarrow 7$
Absorption correction: none	$k = -7 \rightarrow 7$
4706 measured reflections	$l = -21 \rightarrow 22$
1717 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.052$	H-atom parameters constrained
$wR(F^2) = 0.121$	$w = 1/[\sigma^2(F_o^2) + (0.0516P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.96	$(\Delta/\sigma)_{\text{max}} = 0.001$
1717 reflections	$\Delta \rho_{max} = 0.32 \text{ e } \text{\AA}^{-3}$
100 parameters	$\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.01648 (12)	0.27398 (12)	0.56971 (5)	0.0651 (3)
N1	-0.2740 (4)	-0.1917 (5)	0.72963 (13)	0.0677 (8)
C1	-0.3414 (4)	0.0057 (6)	0.71296 (17)	0.0632 (9)
H1	-0.4533	0.0486	0.7346	0.076*
C2	-0.2540 (4)	0.1478 (5)	0.66562 (16)	0.0587 (8)
H2	-0.3052	0.2842	0.6570	0.070*
C3	-0.0897 (4)	0.0876 (4)	0.63081 (15)	0.0501 (7)
C4	-0.0215 (4)	-0.1175 (5)	0.64684 (15)	0.0561 (8)
H4	0.0875	-0.1672	0.6245	0.067*
C5	-0.1161 (5)	-0.2463 (5)	0.69596 (15)	0.0593 (8)
H5	-0.0660	-0.3822	0.7065	0.071*
C6	0.2555 (4)	0.1735 (4)	0.56468 (16)	0.0620 (9)
H6A	0.3003	0.1373	0.6143	0.074*
H6B	0.2588	0.0430	0.5345	0.074*
C7	0.3805 (4)	0.3443 (4)	0.53083 (15)	0.0493 (7)
C8	0.4517 (4)	0.3178 (4)	0.46027 (16)	0.0537 (8)
H8	0.4190	0.1961	0.4325	0.064*
C9	0.4290 (4)	0.5300 (5)	0.56966 (15)	0.0554 (8)
Н9	0.3801	0.5526	0.6169	0.066*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	Atomic displ	acement parameters	(A^2)	
--	--------------	--------------------	---------	--

.1

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0593 (5)	0.0556 (5)	0.0806 (6)	0.0050 (4)	0.0101 (4)	0.0205 (4)
N1	0.0699 (19)	0.0749 (19)	0.0584 (16)	-0.0087 (15)	0.0095 (14)	0.0062 (14)
C1	0.051 (2)	0.079 (2)	0.059 (2)	-0.0008 (18)	0.0091 (16)	-0.0047 (18)
C2	0.057 (2)	0.0542 (18)	0.065 (2)	0.0081 (16)	-0.0015 (16)	-0.0020 (17)
C3	0.0483 (19)	0.0475 (17)	0.0546 (17)	-0.0018 (14)	-0.0016 (14)	-0.0025 (14)
C4	0.059 (2)	0.0474 (17)	0.0616 (19)	0.0032 (15)	0.0121 (16)	-0.0005 (16)
C5	0.066 (2)	0.0527 (18)	0.0595 (19)	0.0022 (17)	-0.0004 (17)	0.0065 (15)
C6	0.056 (2)	0.0492 (17)	0.081 (2)	0.0074 (14)	0.0188 (17)	0.0112 (16)
C7	0.0475 (18)	0.0459 (17)	0.0546 (18)	0.0039 (13)	0.0049 (15)	0.0074 (14)
C8	0.0600 (19)	0.0493 (17)	0.0519 (18)	-0.0006 (15)	0.0007 (15)	-0.0040 (15)
C9	0.060 (2)	0.0618 (19)	0.0443 (17)	0.0053 (17)	0.0105 (15)	0.0009 (15)
Geometric p	arameters (Å, °)					
S1—C3		1.764 (3)	C5—	Н5	0.93	00

supplementary materials

1.820 (3)	C6—C7	1.511 (4)
1.327 (4)	С6—Н6А	0.9700
1.342 (4)	С6—Н6В	0.9700
1.374 (4)	С7—С8	1.378 (3)
0.9300	С7—С9	1.383 (4)
1.385 (4)	C8—C9 ⁱ	1.379 (4)
0.9300	С8—Н8	0.9300
1.385 (4)	C9—C8 ⁱ	1.379 (4)
1.369 (4)	С9—Н9	0.9300
0.9300		
102.52 (13)	С4—С5—Н5	117.6
115.7 (3)	C7—C6—S1	109.87 (18)
123.6 (3)	С7—С6—Н6А	109.7
118.2	S1—C6—H6A	109.7
118.2	С7—С6—Н6В	109.7
119.9 (3)	S1—C6—H6B	109.7
120.1	H6A—C6—H6B	108.2
120.1	C8—C7—C9	117.9 (3)
116.7 (3)	C8—C7—C6	120.7 (3)
118.4 (2)	C9—C7—C6	121.4 (3)
124.9 (2)	C7—C8—C9 ⁱ	120.7 (3)
119.3 (3)	С7—С8—Н8	119.7
120.4	C9 ⁱ —C8—H8	119.7
120.4	C8 ⁱ —C9—C7	121.3 (3)
124.8 (3)	C8 ⁱ —C9—H9	119.3
117.6	С7—С9—Н9	119.3
-1.4 (4)	C3—C4—C5—N1	1.2 (5)
1.6 (5)	C3—S1—C6—C7	-165.4 (2)
-0.4 (4)	S1—C6—C7—C8	-109.1 (3)
179.4 (2)	S1—C6—C7—C9	71.7 (3)
160.6 (2)	C9—C7—C8—C9 ⁱ	1.5 (5)
-19.7 (3)	C6—C7—C8—C9 ⁱ	-177.7 (2)
-0.9 (4)	C8—C7—C9—C8 ⁱ	-1.5 (5)
179.3 (2)	C6—C7—C9—C8 ⁱ	177.7 (3)
-0.1 (5)		
	1.820 (3) 1.327 (4) 1.342 (4) 1.374 (4) 0.9300 1.385 (4) 0.9300 1.385 (4) 1.369 (4) 0.9300 102.52 (13) 115.7 (3) 123.6 (3) 118.2 118.2 119.9 (3) 120.1 120.1 120.1 120.1 120.1 120.1 120.1 124.9 (2) 119.3 (3) 120.4 124.8 (3) 117.6 -1.4 (4) 1.6 (5) -0.4 (4) 179.4 (2) 160.6 (2) -19.7 (3) -0.9 (4) 179.3 (2) -0.1 (5)	1.320 (3) $C6-C7$ 1.327 (4) $C6-H6A$ 1.342 (4) $C6-H6B$ 1.374 (4) $C7-C8$ 0.9300 $C7-C9$ 1.385 (4) $C8-C9^i$ 0.9300 $C8-H8$ 1.385 (4) $C9-C8^i$ 1.369 (4) $C9-H9$ 0.9300 $C4-C5-H5$ 115.7 (3) $C7-C6-S1$ 125.2 (13) $C4-C5-H5$ 115.7 (3) $C7-C6-H6A$ 118.2 $S1-C6-H6B$ 118.2 $S1-C6-H6B$ 120.1 $H6AC6-H6B$ 120.1 $C8-C7-C9$ 116.7 (3) $C8-C7-C6$ 124.9 (2) $C7-C8-H8$ 120.4 $C9^i-C8-H8$ 120.4 $C9^i-C8-H8$ 120.4 $C8^i-C9-C7$ 124.8 (3) $C8^i-C9-H9$ 11.6 $C7-C9-H9$ 11.4 (4) $C3-C4-C5-N1$ 1.6 (5) $C3-S1-C6-C7$ 124.9 (2) $S1-C6-C7-C8$ 179.4 (2) $S1-C6-C7-C9$ 160.6 (2) $C9-C7-C8-$

Symmetry codes: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

$D-H\cdots A$ $D-H$ $H\cdots A$ $D\cdots A$ $D-H\cdots A$								
C1—H1···N1 ⁱⁱ	$C1-H1\cdots N1^{ii}$ 0.93 2.61 3.484 (4) 158							
C8—H8···Cg ⁱⁱⁱ 0.93 2.77 3.560 (4) 143								
Symmetry codes: (ii) $-x-1$, $y+1/2$, $-z+3/2$; (iii) $-x$, $-y$, $-z+1$.								

